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Dimensionality

By J.D. BARrROW
Astronomy Centre, University of Sussex, Brighton BN1 9QH, U.K.

We examine the role played by the dimensions of space and space-time in determining
the form of various physical laws and constants of Nature. Low dimensional manifolds
are also seen to possess special mathematical properties. The concept of fractal dimen-

< sion is introduced and we discuss the recent renaissance of Kaluza-Klein theories

— obtained by dimensional reduction from higher dimensional gravity or supergravity
olm theories. A formulation of the anthropic principle is suggested.

e

EB 1. HISTORICAL INTRODUCTION

—~ The fact that we perceive the world to have three spatial dimensions is something so familiar to

our experience of it that we seldom pause to consider the influence this special property has upon
the laws of physics. Yet, it appears that the dimensionality of the world plays a key part in
determining the form of the laws of physics and in fashioning the roles played by the constants
of Nature.

Interest in explaining why the world has three dimensions is by no means new. From the
commentary of Simplicius and Eustratius (see Neugabauer 1975), Ptolemy is known to have
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written a study on the 3D nature of space entitled On dimensionality in which he argued that no
more than three spatial dimensions are possible in Nature. Unfortunately this work has not
survived. What does survive is evidence that the dramatic difference between systems identical
in every respect but spatial dimension was discovered and appreciated by the early Greeks. The
Platonic solids, first discovered by Theaitetos (Sarton 1959), brought them face-to-face with a
dilemma: why are there an infinite number of regular, convex, two-dimensional polygons but only
five regular three-dimensional polyhedra? This mysterious property of physical space later spawned
many mystical and metaphysical ‘interpretations’.

In the modern period, mathematicians did not become actlvely involved in attempting a
rigorous formulation of the concept of dimension until the early nineteenth century. During the
nineteenth century Mébius considered the problem of superimposing two enantiomorphic solids
by a rotation through 4-space and later, Cayley, Riemann and others developed the systematic
study of N-dimensional geometry although the notion of dimension they employed was entirely
intuitive. It sufficed for them to regard dimension as the number of independent pieces of

Y, \

information required for a unique specification of a point in some coordinate system. Gradually
the need for something more precise was impressed upon mathematicians by a series of counter-
examples and pathologies to several simple intuitive notions. For example, Cantor and Peano
provided injective and continuous mappings of R into R? to confute ideas that the unit square
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contained more points than the unit line. After unsuccessful attempts by Poincaré it was Brouwer
who established the key result (Brouwer 1911; 1913): he showed that there is no continuous
injective mapping of R¥ into R if N # M. The modern definition of dimension due to Menger
and Urysoln grew out of this fundamental idea (Menger 1928; Hurewicz & Wallman 1941).
The question of the physical relevance of spatial dimension seems to arise first in the early work
[ 127 ]
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(1747) of Immanuel Kant (see Handyside 1929). Herealized that there wasanintimate connection
between the inverse square law of gravitation and the existence of precisely three spatial dimen-
sions, although he regards the three space dimensions as a consequence of Newton’s inverse
square law rather than vice versa.

In the twentieth century a number of outstanding physicists have sought to accumulate
evidence for the unique character of physics in three dimensions. Ehrenfest’s famous article of
1917 was entitled In what way does it become manifest in the fundamental laws of physics that space has
three dimensions? and it explained how the existence of stable planetary orbits, the stability of atoms
and molecules, the unique properties of wave operators and axial vector quantities are all
essential manifestations of the dimensionality of space. Soon afterwards Herman Weyl (1922)
pointed out that only in (3 + 1)-dimensional space~times can Maxwell’s theory be founded upon
an invariant integral form of the action; so, only in (3 + 1) dimensions is it conformally invariant.

In recent years the problem of dimensionality has re-emerged in connection with super-
symmetric gauge theories and the description of chaotic dynamical systems. Our aim here is to
give a brief discussion of some of the most interesting influences of dimensionality on physics and
mathematics.

2. ORBITS

One of the first areas of physics to display the role of dimensions is the theory of orbital motion
under central forces. We immediately see the reason for the prevalence of inverse square laws in
physics. Consider first the question of planetary motions.

The Poisson-Laplace equation for the gravitational field of force in an N-dimensional space
has a solution for the gravitational potential, ¢ and force, F, of the form

@(r)ocr®N; F(r)yocr'=N, N> 2, (1)

for a radial distribution of material. The inverse square law of Newton follows as an immediate
consequence of the tri-dimensionality. A planetary motion can only describe a central elliptic
orbit in a space with N = 3 if its path is circular, but such a configuration is unstable to small
perturbations. In three dimensions, of course, stable elliptical orbits are possible. If hundreds of
millions of years in stable orbit around the Sun are necessary for planetary life to develop then
such life might only develop in a three-dimensional world. In general, the existence of stable,
periodic orbits requires 73/ (r) - 0 as7— 0 and 73F (r) - co as r - co. Therefore we require N < 4.
If we examine the analogous problem in general relativity by examining motion in the gravi-
tational field of the (N + 1) dimensional Schwarzschild solution we again find no stable bound
orbits exist for N > 3.

One of Newton’s most famous results is his proof that if two spheres attract each other under
an inverse square law of force they may both be replaced by points concentrated at the centre of
each sphere with mass equal to that of the respective sphere. It can be shown (Sneddon &
Thornhill 1949) that the general form of the gravitational potential for which the gravitational
force of a sphere can be replaced by that of a point at its centre is the Yukawa potential

Poc e[, (2)
although, for a sphere of radius ¢ and density p, the mass that must be concentrated at its centre is

M(A) = (4nap/A?) (cosh Aa — (sinh Aa) /Aa), (3)
[ 128 ]
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and we recover Newton’s result as A — 0
M(0) = $na* p. (4)

The truth of Newton’s result is a direct consequence of the existence of three spatial dimensions
in (1). Gravitation physics is simplest in three dimensions.

3. ATOMIC STABILITY

It is widely known that matter is stable. By this we mean that the ground state energy of an
atom is finite. However, the common text-book argument that employs the uncertainty principle
to demonstrate this is actually false. Although the energy equation for a single electron of mass m
and charge —e in circular orbit around a charge +e gives a total atomic energy of

\ E = I2/2mr?— e2/r, (5)
and thisenergy apparently has a finite minimum of 7y ~ 4%/2me?, where E’(r,) = 0, itis, in principle,
possible for the electron to be distributed in a number of widely-separated wave packets. The
packet close to the nucleus could then have an arbitrarily sharp momentum and position
specification at the expense of huge uncertainty in the other packets. In this manner the ground
state energy might be made arbitrarily negative.t For these reasons analyses of atomic stability
such as those of Ehrenfest (1917) and those that use only the uncertainty principle mustberegarded
as only heuristic. However, their results are confirmed by an exact analysis of the Schrédinger
equation. In 1917, Ehrenfest considered only the simple Bohr theory of an N-dimensional
hydrogen atom. He found the energy and radii of the energy levels and noted that when N > 5
the energy levels increase with quantum number whereas the radii of the Bohr orbits

7(N) & (me? L2 p~2)UN-49
decrease with increasing quantum number L and electrons just fall into the nucleus. Alterna-

tively, if we write down the total energy for the system and use the uncertainty principle to
estimate the kinetic energy resisting localization we have for N > 2, that
E ~ h?/2mr? — ¢ [rN-2, (6)

It can be seen that for N > 5 there is no energy minimum. For N = 4 the situation is ambiguous
because there ceases to exist any characteristic length in the system. This also indicates that no
minimum energy scale can exist. It is possible to demonstrate this more rigorously by including
special relativistic effects in the energy equation (6). Thus, for N = 4, the relativistic energy is
(where m, is the rest mass of the electron now),

E ~ (2h?/r2 + m§ct)s —e2/r2, (7)
and so as r - 0, £— —1/r? and no stable minimum can exist.

On the basis of these arguments it could be claimed that, if we assume the structure of the laws
of physics to be independent of the dimension, stable atoms, chemistry and life can only exist in
N < 4 dimensions. (Note that in two dimensions all energy levels are discrete and there exists a
finite energy minimum together with a spectrum extending to infinity, the radius of the first
orbit is huge, ca. 0.5 cm.) These simple arguments can be confirmed by solving the Schrodinger
equation for the N-dimensional hydrogen atom. The dimensionality of the Universe is a reason
for the existence of chemistry and therefore, most probably, for chemists also.

t A much stronger, nonlinear constraint is required in addition to the Heisenberg uncertainty principle if one
is to rule out ground state energies becoming arbitrarily negative. The strongest result is supplied by the non-
linear Sobelev inequality (Lieb 1976). This supplies the required bound on the ground state energy and shows
that matter is indeed stable in quantum theory.

[ 129 ]
22-2


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

| A

”/\\ \\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

340 J.D.BARROW

4. WAVE EQUATIONS

Many authors have drawn attention to the fact that the properties of wave equations are very
strongly dependent upon the spatial dimension (Ehrenfest 1917; Poincaré 1917; Hadamard 1923).
Three-dimensional worlds appear to possess a unique combination of properties which enable
information-processing and signal transmission to occur via electromagnetic wave phenomena.
Since our Universe appears governed by the propagation of classical and quantum waves it is
interesting to elucidate the nature of this connection with dimensionality.

Let us recall, as simple examples, the solutions to the simple classical wave equation in one, two
and three dimensions.

One dimension:
10% Q%
= 8
202 Ox%’ (8)
where ¢ is the signal propagation speed,
with initial conditions set at ¢ = 0 as

u(xs 0) =f(x)a
d (9)
5 (%,0) = g().
This has the solution of D’Alembert,
1 [fotcet
u(x,t) = §Lf (x+et) +f(x—et)] + 5 zﬁctg(!/) dy. (10)

Two dimensions:

102 Q% Q%
?W_@F-I_gy—é’ (11)

with initial conditions at ¢ = 0 of

ou

u(x,y,O) =f(x9y)a
5;(%% 0) =g(xay)

This has the solution of Poisson,

SEn) _g&m)
u(%3:4) 2ncatffp<ct e —p?)h dg n+2n€ffp<ct (22— p?)} dgd”. (13)
=pr=(E-x)+(n—y)~

Three dimensions:
10% Q% Q%% Q%

c—zm=a—§§+@§+5z‘§: (14)
with initial conditions at ¢ = 0 as
u<xay’25 0) =f(x,y,z),
Qu (15)
g(x,y,z,O) =g(x,g/,z).

This has the solution of Kirchoff,

u(x,y,2,t) =ai~ag[ ff fg,% ] 2tff g(&,7,¢)dS, (16)

wherer? = (£ —x)2+ (7 —y)%+ ({ — z)? and dS'is the surface element with respect to (£, 7, {) on the
sphere r = ¢t centred on (x,y,z) = (0,0,0).
[ 130 ]
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From these three solutions, (8)—(16), something remarkable emerges. We see that in the one-
and two-dimensional cases, the domain of dependence that determines the solution u(x,t) at
point (x,¢)is given by the closed interval [x—ct, x+¢t] and the disk (interior plus boundary) r < ¢,
respectively. Therefore, in both cases the signals may propagate at any speed less than or equal
to ¢. In complete contrast, the three-dimensional solution has a domain of dependence consisting
only of the surface of the sphere of radius ¢¢. All three-dimensional wave phenomena travel only at
the wave velocity ¢. We are ignoring the effect of dispersion here.

What this means in practice is that in two-dimensional spaces signals emitted at different times
can be received simultaneously: signal reverberation occurs. It is impossible to transmit sharply
defined signals in two dimensions, for example, by waves on a liquid surface. Now it is known that
the transmission of wave impulses in a reverberation-free fashion is impossible in spaces with an
even number of dimensions (Hadamard 1923). The favourable odd dimensional cases are said to
obey Huygen’s Principle (Courant & Hilbert 1962). This situation has led many to suppose that
life could only exist in an odd dimensional world because living organisms require high fidelity
information transmission at a neurological or mechanical level (Poincaré 1917; Whitrow 1955).

Interestingly, one can narrow down the number of reasonable odd dimensional spaces even
more dramatically by appealing to the need for wave signals to propagate without distortion.
Three-dimensional worlds allow spherical waves of the form

u(%y, %9, %33 1) = h(r) f(r—ct), (17)
N

with 2= Y a3, (18)
i=1

to propagate in distortionless fashion to large distances; but this is no longer the case for N > 3.
For example, in seven dimensions Ehrenfest shows that a solution to the wave equation is,

U1y ey Xg5 8) = (A1) f(E=1/0) + (B[r") f' (¢ =r/c) + (D[r*) f" (t=7]e), (19)
where 4, B and D are constants. Thus, at time ¢ there is no reverberation; only signals which were
emitted at the time (¢—7/c) are received. However, these signals are now strongly distorted
because at large r the terms in " and f” determine the form of u(«, ¢).

Only three-dimensional worlds appear to possess the ‘nice’ properties necessary for the
transmission of high fidelity signals because of the simultaneous realization of reverberationless
and distortionless propagation.

5. FUNDAMENTAL UNITS

Our Universe appears to possess a collection of fundamental or ‘natural’ units of mass, length
and time that can be constructed from the physical constants G, % and ¢, (see Barrow 1983).
A dimensionless constant can only be constructed if the electron charge e is also admitted and
then we obtain the dimensionless quantity ¢?/k¢ first found by Sommerfeld. In a world with N
dimensions the units of £ and ¢ remain ML2T-! and LT~ but the law of gravitation changes in
accord with (1) and hence the units of G are M~ LY T-2. Likewise, Gauss’s theorem relates ¢ to
the spatial dimension and the units of ¢2 are MLYT-2. Thus in N dimensions the dimensionless
constant of Nature is proportional to

J2-N (N1 G3B—N) (N4, (20)
[ 131 ]
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It is interesting to notice that for n = 1,2, 3,4, the constants of electromagnetism, quantum
theory, gravity and relativity are absent respectively. Only for N > 4 are they all included in a
single dimensionless unit. A physical explanation of this result would be very enlightening,
especially in view of the role that gauge theories with N > 3 may place in effecting a unification
of all the fundamental forces (Salam & Strathdee 1982; Cremmer & Julia 1979; de Wit & Nicolai
1982; Cremmer ¢f al. 1978; Witten 1981, 1982).

6. MATHEMATICS

So far, we have displayed a number of special features of physics in three dimensions under the
assumption that the form of the underlying differential equations do not change with dimension.
One might suspect the form of the laws of physics to be special in three dimensions if only because
they have been constructed solely from experience in three dimensions. If we could live in a world
of seven dimensions perhaps we would end up formulating its laws in forms that made seven
dimensions look special. One can test the strength of such an objection to some extent by
examining whether or not 3 and (3 + 1) dimensions lead to special results in pure mathematics
where the bias of the physical world should not enter. Remarkably, it does appear that low-
dimensional groups and manifolds do have anomalous properties. Many general theorems
remain unproven or are untrue only in the case of N = 3; a notable example is Poincaré’s
theorem that a smooth ¥ dimensional manifold with homotopy type $¥ is homeomorphic to S¥.
This theorem is true if N # 3 and the homeomorphism can be replaced by a diffeomorphism
if N=1,2,5 or 6 (the N =4 case is open). Other examples of this ilk are the problem of
Schoenflies and the annulus problem; each has unusual features when N = 3. In addition,
the low-dimensional groups possess many unexpected features because of the ‘accidental’
isomorphisms that arise between small groups. The twistor programme (see, for example,
Penrose 1977), takes advantage of some of these features unique to (3 + 1)-dimensional space-
times.

There is one simple geometrical property unique to three dimensions that plays an important
role in physics: universes with three spatial dimensions possess a unique correspondence between
rotational and translational degrees of freedom. Both are defined by only three components. In
geometrical terms this dualism is reflected by the fact that the number of coordinate axes, 7, is
only equal to the number of planes through pairs of axes, n(n—1), when n = 0 or 3. These
features are exploited in physics by the Maxwell field. In an (n+ 1)-dimensional space—time,
electric, E, and magnetic, B, vectors can be derived from an (n+ 1) dimensional potential 4,.
The field B is derived from 3n(n— 1) components of curl 4; while the E field derives from the n
components of 04;/0¢. Alternatively we might say that in order to represent an antisymmetric
second rank tensor as a vector, the $z(n— 1) independent components of the tensor must equal
the spatial dimension, n. So the existence of axial vector representations of quantities like the
magnetic vector B and the structure of electromagnetic fields is a consequence of the tri-
dimensional nature of space.

There also exists an interesting property of Riemannian spaces that has physical relevance:
in an (n+ 1)-dimensional manifold the number of independent components of the Weyl tensor
if zero for N < 2, and so all the 1, 2 and 3 dimensional space—times will be conforraallyrelated and
they will not contain gravitational waves. The non-trivial conformal structure for N = 3 leads
to the properties of general relativity.

[ 132 ]
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As afinal example where the mathematical consequences of dimensionality spill over into areas
of physics we should mention the theory of dynamical systems, or ordinary differential equations,
8=F(x); x=(%,...,%). (21)

The solution of the system of equations (21) corresponds to a trajectory in an N-dimensional phase
space. In two dimensions the qualitative behaviour of the possible trajectories is completely
classified. As trajectories in two dimensions cannot cross without intersecting, the possible stable
asymptotic behaviours are simple: after large times trajectories either approach a stable focus
(stationary solution) or a limit cycle (periodic solution). However, when N > 3, trajectories can
behave in a far more exotic fashion. They are now able to cross and develop complicated knotted
configurations without intersecting. All the possible behaviours as ¢ — co are not known for
N > 3. When N > 3 it has been shown (Ruelle & Takens 1971; Plykin 1974; Newhouse et al.
1978) that the generic behaviour of trajectories is to approach a strange attractor. This is a compact
region containing no foci or limit cycles and where all neighbouring trajectories diverge from
each other exponentially in time whether followed forwards or backwards along trajectories, so
there is sensitive dependence upon initial conditions. Whereas the simple attractors in the one-
and two-dimensional phase spaces have dimension one (foci) or two (limit cycles) strange
attractors have a non-integral dimension. This is manifested by the strange attractor possessing
structure on all length scales. When magnified, any portion of the attractor in phase space is
revealed to be just as detailed as was its large scale appearance. So far when we have mentioned
‘dimension’ in §§ 1-5 we have been referring to topological dimension but there exist other concepts
of dimension that are more useful in practice. In the case of the strange attractor it has a non-
integral fractal or Hausdorff dimension (Hausdorff 1918; Mandelbrot 1977; Russell et al. 1980).
This concept of dimension gives a measure of the amount of information necessary to specify the
structure of the attractor. Suppose we wish to cover a line with a minimum number of line
segments of length ¢, n(e). We clearly need n(e) of order ¢~*. Likewise to cover an area or a volume
by elemental squares or cubes of side € we require a minimum z(e) of order e~2 or ¢~3 in each case.
To cover a d-dimensional surface we require n(¢) of order e~2. In general, we can define a

fractal dimension as
d= ll_l;lg In (n(€))/In (e71). (22)
Strange attractors have non-integral values of d < N. This situation arises because strange
attractors are not manifolds, but the product of a manifold and a fragmented set called a Cantor
set. A simple example of a Cantor set can be generated from the unit line segment [0, 1] as
follows: delete the middle third of the line segment and then the middle third from all the
resulting segments and so on ad infinitun. In table 1 we list, L, the total length of the line segment
surviving from the rth stage of the deletion process, the number of pieces, z, and the length of each
piece.
After an infinite number of these operations the set that remains is a Cantor set. It clearly has
zero measure because the total length of the removed pieces is the infinite geometric progression

PROIESE (23)

The Cantor set is nowhere dense and cannot be represented by a set of isolated points. If we
choose ¢ = 3" and n(e) = 2" in (22) then we see its dimension, 4, is non-integral
d = lim In(2") /In (3") = 0.6294.... (24)
700

[ 133 ]
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The value of d tells us how much information is necessary to specify the location of the set to
within a given accuracy.

It appears that the early evolution of the Universe, close to the initial singularity, may have
possessed these exotic features and displayed chaotic structure on all length scales. In effect,
general relativistic space- times can evolve as though they possess a non-integral value of 4. This
is the case in the Mixmaster universe (Barrow 1981 a, 1982; Chernoff & Barrow 1983) where an
infinite number of space-time oscillations occur in any open time interval about the initial
singularity at £ = 0 and there is structure on all scales.

TaBLE 1. THE cONSTRUCTION OF A CANTOR SET FROM THE INTERVAL [0, 1]

number length total
of pieces, of each length,
line decomposition step n(€) piece, € L
l ] 0 1 1 1
L 1o J 1 2 3 g
L L L L 2 4 1 2
r 2r 3 (%
7. Is N > 3?

The idea that the Universe really does possess more than three spatial dimensions has a
distinguished history (Kaluza 1921; Klein 1926; Einstein & Bergmann 1938). These authors sought
to associate an extra spatial dimension with the existence of electromagnetism. Under a particular
symmetry assumption Einstein’s equations in (4 + 1) dimensions look like Maxwell’s equations
in (3 + 1) dimensions together with an additional scalar field. Very roughly speaking one imagines
uncharged particles as moving only in the (3 + 1)-dimensional subspace but charged particles
move through (4 + 1) dimensions. Their direction of motion determines the sign of their charge.

Supersymmetric gauge theories have rekindled interest in higher dimensional gauge theories
that reduce to the N = 3 theory by a particular process of dimensional reduction. A topical
example is a (9 + 1)-dimensional supergravity theory advocated by Scherk & Schwarz (1974). By
analogy with the original Kaluza-Klein theories we would associate (3 + 1) of these dimensions
with our familiar space-time structure whose curvature is linked to gravitational fields and the
other additional dimensions correspond to those of a set of internal symmetries. We perceive them
as electromagnetic, weak and strong charges. These extra dimensions are compactified to

dimensions
~ogtLy (25)

where Lp = (Gh/c®)% ~ 103 cm is the Planck length and a, = 10~ — 10-2is the gauge coupling
at the grand unification energy. Thus, according to such theories the Universe will be fully N
dimensional (with & > 3) when the big bang is hotter than ca. 1017 GeV, but all except three
spatial dimensions will become compactified to microscopic extent when it cools below this
temperature after ca. 10-%%s. One source of interest in this scenario has been to explore whether
there exist (N + 1)-dimensional cosmological models in which such an evolution naturally occurs
with three dimensions expanding while others contract. (Chodos & Detweiler 1980; Freund
1982, 1983). These authors show that one can find anisotropic cosmological solutions to (N +1)-
dimensional general relativity in which 3 spatial dimensions expand at equal rates while the
[ 134 ]
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remaining (N — 3) spatial dimensions contract. For example, Chodos & Detweiler take a simple
metric of Kasner type in (N + 1)-dimensional space-time (see also Appelquist et al. 1983),

N
ds® = d2— 3 a}(t)dx}, (26)
i=1
then the vacuum Einstein field equation have the following solution for all N
N N
a(t) =i X p= X pi=1, (27)
i=1 i=1
so at least one of the expansion rates p;, must be negative. If we require p; = p, = p, = p, > 0and
ps=ps = ... =py =p_ < 0 then (27) gives, in general,
by =3+ (N=3)} (N-1)I]/N 3, (28)
p-=[(N=3)—y3(N-3)} (N-1)}]/N(N-3). (29)

For N = 4 we have p, = —p_ = 0.5. In the 1-2-3 dimensions this model expands at the same
rate as the radiation-dominated Friedman universe. However, it is straightforward to show
(Barrow, unpublished work) that models of the type (27) with monotonically increasing and
decreasing axes are unstable because they possess isotropic spatial N-curvature. In general, the
(N +1)-dimensional cosmological models possess a sequence of Mixmaster oscillations near
¢t ~ 0 during which the directions of expansion and contraction are permuted in a quasi-random
fashion by the anisotropic curvature (Barrow 1982). No single dimension will collapse mono-
tonically as the Universe expands in overall volume ((a,4, ... ay) o ¢t according to (27) for all N)
and we will not in general create the situation hypothesized by Chodos, Detweiler and Freund.
If dimensional compactification occurs it must have a much subtler origin.

8. THE ANTHROPIC PRINCIPLE

Even if cosmological models like (27) were stable they would not offer a convincing explanation
for the observed (3 + 1) dimensions. After all, there is no reason why only three dimensions should
be left expanding. Since other contributors (Rees, Press, Carter, this volume) are discussing some
aspects of the anthropic principle (see Barrow & Tipler 1983) itisinteresting to note that Whitrow
(1955) first suggested an anthropic ‘explanation’ for why we observe space to possess three
dimensions. Perhaps out of an ensemble of all possible universes of all possible dimensionalities
observers can only exist in those with three space dimensions? One approach to providing
circumstantial evidence in favour of the anthropic principle has been to show that life-supporting
or sustaining aspects of the physical world are very sensitive to slight changes in the values of the
fundamental constants of Nature (Dicke 1957, 1961; Carter 1974; Carr & Rees 1979; Barrow
1981 b). It is obvious from our discussion above that the consequences of the equations of physics
are very sensitive to their dimension because they are differential equations, but when it comes to
making small changes in the values of fundamental constants like ¢ or G one is on much shakier
ground. Although a small change in either of these quantities might so alter the rate of cosmo-
logical or stellar evolution that life could not evolve, how does one know that compensatory
changesin other constants might not recreate a favourableset of solutions? Suppose, forsimplicity,
we treat the laws of physics as a set of # ordinary differential equations that contain a set of
constant parameters A; which we identify with the constants of physics

&=F(x;A); %€(¥...x,). (30)
The structure of the physical world is represented by the solutions of this system, say x* for the
[ 135 ]
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particular realization, A¥ of constants that we observe. Is the solution #* stable against small
changes in the parameter set Af? This is the type of question that the Ruelle-Takens theory
described in § 6 is designed to answer for generic systems of equations of the form (30). It tells us
thatforn > 3 (which will certainly be the case for our model of the laws of physics) the solution «*
will become unstable to changes in A; away from A¥ past some critical value. If the original
attractor at #* was a simple non-chaotic one with integral Hausdorff dimension then our set of
laws and constants are very special in A; space but if the original attractor was strange then there
should be many other similar sets in the A, parameter space. Whether these attractors have
anything to do with the necessary and sufficient conditions for observers is an interesting question.

The author would like to thank Dr R. Fenn for helpful discussions.
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